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Abstract 
Mobile overconstrained loops are now familiar to linkage kinematicians, but 50 years 
ago they posed a puzzle to the few who studied the motions of jointed rigid bodies. 
Ranking high in significance among the "paradoxical" linkages is the group due to 
Bricard, from the first quarter of this century. Unfortunately, these 6-revolute loops, of 
considerable interest to line geometricians, have been subject to a great deal of 
misunderstanding, and have never been delineated by appropriate sets of independent 
closure equations. This paper is an overdue attempt to remedy the situation. 

Introduction 
AMONG THE MANY mobile overconstrained linkages now known, the 6-revolute loops seem to hold 
the greatest fascination for kinematicians, particularly, and understandably, those who have a 
geometrically oriented viewpoint. Of the 6-R chains, the most remarkable, and probably the 
least generally known, are the three types which Bricard[1] discovered as a result of his 
investigation into mobile octahedra. We shall refer to them here as the "octahedrar' linkages, 
although Goldberg's [2] term, "6-plate" linkages, is undeniably the most accurate brief descrip- 
tion. 

For someone who sets out to define a linkage by means of interparametric constraints and 
an independent set of closure equations, the difficulties are considerably magnified as the 
number of links increases. At this stage, we still have not quite completed [3] defining all mobile 
four-bar loops. It is not surprising, then, that none of the five distinct Bricard linkages has been 
algebraically delineated. The Schatz linkage [4], which was inspired by a special Bricard loop, 
has been analysed by Brfit [5], and the Myard and Goldberg loops have recently been treated [6]. 

Apart from the fact that the Bricard linkages present a considerable algebraic challenge, and 
that their solutions will complete the assault on the known loops of their general character, it is 
hoped that the following analysis will clear away the misconceptions concerning them and even, 
for many workers perhaps, bring them out of the kinematic unknown. In addition, the results 
should be of value to those involved in a current resurgence of interest in line geometry. 
Bottema has also expressed curiosity about the relative motion between links of the octahedral 
chains in the closing paragraph of [7], from which paper possible applications of the linkages to 
structural organic chemistry may be inferred. 

In the analysis to follow, we shall use a terminology which is well known and most clearly 
defined by an illustration, such as Fig. 1. For brevity, we shall write cosine as c and sine as s. 
There will be other special conventions for the octahedral linkages which will be described at 
the appropriate places. We shall refer to the 6-bar closure eqns (A6.1-A6.12) in the form given 
in the Appendix. The reader is reminded in this context that eqns (A6.1-A6.9) are "rotational" 
equations, derivable from a spherical indicatrix and, as they stand, representing at most three 
independent equations. Equations (A6.10-A6.12) are "translational" equations, generally in- 
dependent and derivable, in principle, as dual relationships from the rotational set. We shall 
also refer to certain 5-bar closure eqns (A5.9, A5.12) and to a 4-bar eqn (A4.9), as given in the 
Appendix. 
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Figure 1. 

The present work is of a style somewhat similar to that of [6], to the extent that the mobility 
of each linkage treated is assumed at the outset. In each case a fairly arbitrary, but economical, 
set of independent closure equations will be developed. The work will not follow the more 
comprehensive, searching approach for existence criteria adopted in [3, 8], for example. 

The Linkages 
Although, in chronological order of publication, the octahedral linkages were the first 6-R 

loops to be determined by Bricard, it will be clear why it is more appropriate to first consider 
his other discoveries, assuming that he was primarily responsible for all of them. At this point I 
wish, in passing, to attest to my great respect for Bricard's work and my admiration of his 
mathematical power. I do so because it will be relevant in places to point out his apparent lack 
of rigour or knowledge, and it is conceivable that Bricard's own minor failings were in part 
responsible for the confusion which abounds concerning his linkages. 

In a summary[9] of "m6canismes paradoxaux" containing only turning pairs, Bricard lists 
three distinct 6-bar loops as well as his octahedral linkages. He has previously pointed out that, 
for mobility, all six joint axes must belong to a linear complex, but gives a reason for mobility 
of each of the first three linkages separately. 

1. The general line-symmetric case 
The 6-R line-symmetric loop in its greatest generality is illustrated by the model shown 

in Fig. 2. It is to be noted, in particular, that offsets are non-zero and skew angles between 
adjacent joints are not necessarily rightangles. It is more common to observe special forms of 
this linkage, such as the model shown in Fig. 3. I believe that Bricard's explanation of this 
loop's mobility is facile, and the reader is referred to Waldron's [8, 10] screw system analysis of 
the 6-H line-symmetric chain for a satisfactory treatment. 

It is the easiest of the Bricard loops to analyse algebraically. One has immediately the 
parametric constraints 

a12 = a45 a23 = a56 a34 = a61 

0/12 ~ 0/45 0/23 ~ 0/56 0/34 ~ 0/61 

R1  = R 4  R2 = R5 R3 = R 6  

and the independent closure equations 

OI ~ 04 (1.1) 

02=05 (1.2) 

03 = 06. (1.3) 
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Figure 2. 

Substitution of the above relationships between skew angles and joint rotations into eqns 
(A6.1-A6.9) results in some of the equations being identically satisfied. Of the others, it can be 
shown that there is only one independent rotational equation, such as 

C~34( $02C03 SOt 12 + C02$03S0t 12Ca23 "~- S03 cOl l2$Ot 23) 

+ S0134(S01C02C03 "-]- C01S02C03C0112 -- S01$02S03C0123 

+ CO l C02S03C0112CCl23 

- -  cO I s03sot 12sot 23) 

= C01S02S0123 q- S01C02C0[12S0123 "~ S01S0112C0123. (1.4) 

X I 

Figure 3. 
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It can similarly be shown that only one of the translational eqns (A6.10-A6.12~ is 
independent, and we choose 

a 12(cOt + c02c03 - sO2sOsca23) + Rt(sO:cO3sa 12 

4- C02S03S0~12C0123 q- S03C0;12S0123 ) 4- a23(c01c02 -- sOjsO2cotl2 

+ c03) +R2(sO~sa~, + sOssa23) + a34(1 + cOzc02c03 
" (1.5) 

- sOlsO2cO3cctt2 - cOlsO2sO3cct23 - SOlCO2sO3coqzca23 

q- s01s03s0112s0123 ) 4- R3(cOisO2sot23 

4- sOlcO2col12sot23 + sOlsol12cot23 ) = O. 

Equations (1.1-1.5) are a set of independent closure equations for the general line-symmetric 
6-R loop. As already suggested, alternative equations are available and, in some cases, one of 
them will be necessary to locate the appropriate quadrant for a joint angle which might be sought 
for a particular configuration. No attempt is made here to determine explicit input-output 
relationships for all joint angles. These remarks apply, in general, to each of the linkages examined 
in this paper. 

2. The general  p l a n e - s y m m e t r i c  case  

A model of a general plane-symmetric 6-R linkage is shown in Fig. 4. More common 
examples of special cases are illustrated by the models of Fig. 5. As for the line-symmetric 
loop, so for the general form of this linkage, offsets are non-zero and skew angles not 
rightangles. Again, readers are directed away from Bricard's explanation of the loop's mobility 
to that of Waldron[8, 10] for the corresponding 6-H chain. 

For the general Bricard loop, we have the dimensional conditions, say, 

O61 = a12 a56 ~-- a23 a45 = 034 

a6z + al2 = ~r a56 + a23 = 7r an5 + a34 = 7r 

R t = R4 = 0 R6 = R2 R5 = R3 

and two independent closure equations 

06+ 02 = 2~r (2.1) 

05 + 03 = 2r. (2.2) 

We have thereby chosen joint axes 1 and 4 to lie in the linkage's plane of symmetry. 

Figure 4. 
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Figure 5. 

Rather than attempt to simplify the general 6-bar equations to determine the remaining 
independent ones for this loop, we consider 'half' of the linkage by replacing joints 5 and 6 by a 
single revolute, joint 5', which is directed at rightangles to the plane of symmetry and passes 
through the point of intersection of joints 1 and 4. In order for the substitute 5-bar loop to be 
mobile, joints 1 and 4 are made cylindric and renamed 1' and 4', respectively. As is clear from 
Fig. 6, the new linkage will be subject to the dimensional constraints 

a4,5, = Rs, = as,i, = 0 

7r 3~r 
O/4, 5, ----- - ~  O~5' l ' = - ~ - - .  

We may now use the 5-bar closure equations for this special C-R-R-C-R- loop to establish 
relations among 01 - 04 for the original linkage. We clearly must avoid involving r4,, 05,, rv in any 
equations and, from Fig. 6, we see that 

~'+04 z;+Oi 
04, - 2 01, = 2 

3 2 

J 

Figure 6. 
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Advancing the subscripts in (A5.9) by 4 and 2 yields, respectively, the two following 
equations. 

cOvs0/z2 = sO3sO4,s0/23 - c03c04,sa23c0/34 - c04,c0/23sct34 

c04,s0/34 = SOvSOS0/23 - CO],CO2Sa23C0/j2- COvC0/23S0/~ 2 

Advancing the subscripts in (A5.12) by 2 yields the result 

- a23(s01,cO2 + cOvsO:0/~2) + RcOt,sat2 - a l : O v  + a34sO4, - R3cO4,s0 /34  = O. 

Alternative equations are available, but the above three are obviously independent of each 
other and of (2.1,2). Rewriting them now in a form suitable to the original linkage, we have 

O~ 04 04 04 
+ S'~C0/23S0134 q- C03S-2-S0/23SO123C0/34 Jr SO3C'-2-S0/23 = 0 S-~SOII2 

2 2 
(2.3) 

04 01 - 01 01 
S'¥$0/34 "4- S-~C0/23S0112 + C02S'-~S0/23C0/12 q- S02¢-2S0/23 = 0 (2.4) 

O1 / OI ~ Ol - ~ 04 -- OI - -  R 3 S - ~ S O t 3 4  = 0 (2.5) a,2cy  + a23 c-fc.  - sTsO:0/,2 ) - a3.¢-f + n:-fs0/ ,2 O. 

Equations (2.1-2.5) are a set of independent closure equations for the general plane-symmetric 6-R 
linkage. 

3. The trihedral case 

This unique linkage, also described as "rectangular" and "two-point", was detailed and 
shown to be mobile in [9]. It is illustrated by the model of Fig. 7 and the schematic of Fig. 8 and 
has the geometrical properties, say, 

7r 37r 
O~12 ~ O/34 = 0/56 = -2- 0/23 : O/45 = 0/61 - -  

Ri=0,  all/ 

a~2 + a342 + a562 = a~3 + aZs + a26,. 

Figure 7. 
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Figure 8. 
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Screw system theory is eminently suitable for demonstrating the full-cycle mobility of this 
chain. Because each set of three alternate joint axes is concurrent, all six axes pass through a 
single line defined by the two points. The six axes therefore lie permanently on a special linear 
complex, and the loop is mobile. The line through which they pass contains the single screw (of 
zero pitch) which is reciprocal to their 5-system. 

Four independent closure equations are readily obtained from Fig. 8. Some elementary 
trigonometry applied to face A6A~A20' of the hexahedron depicted establishes that 

1 
A20'  = _-7-(a61 + a12c00 

SOl 

and 

A60'  = ~01(a12 + a61c00. 

By obtaining analogous results for all six faces, we may write down two alternative expressions 
for the length of each of six edges, leading to six relations among joint angles, four of which are 
independent. We may then write, say, 

sO3(a61 + a12c01) = sOl(a34 + a23c03) (3.1) 

sOs(a23 + a~c03) = sO3(a56 + a4~c05) (3.2) 

sO4(a12 + a23c02) = sO2(a45 + a34c04) (3.3) 

sO6(a~ + a4~c04) = sO4(a61 + a56c06). (3.4) 
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A fifth independent equation may be obtained by substitution of the dimensional constraints into 
(A6.9), yielding 

S05S06 = S02S03. (3.5} 

Again, several alternative closure equations are available. 

Octahedral loops 
Bricard set himself the task of solving in part a problem posed by C. Stephanos, namely to 

establish the existence or non-existence of deformable polyhedra. He shows in [I] that there are 
three distinct types of octahedra with triangular faces which are fully deformable. One is 
symmetrical about a line and another about a plane. The third has the property that the 
"opposite" angles at each vertex are equal or supplementary, and is dubbed[9] by Bricard 
"doublement aplatissable". Bricard's thorough investigation led to further remarks on the 
kinematics of the octahedra by Mannheim in the form of a note at the end of [1], and to a 
considerable extension and geometrical refinement by Bennett [11] who, among other matters, 
examines chains of mobile octahedra. It is also in this paper that Bennett applies the previously 
purely geometrical concept of the spherical indicatrix to a jointed assemblage of rigid bodies. 
Goldberg[12] places the Bricard octahedra into some perspective among polyhedral linkages, 
and remarks particularly on the property of collapsibility. 

Bricard was quick to see the relationship between his octahedra and spatial linkages, and 
lists[l] the four mobile "hexagones" obtainable from any of the octahedra by removing certain 
pairs of faces, such as the intersecting pair. Looking at the connection another way, one can 
view a Bricard octahedron as a very special multiloop linkage in which all eight ternary links 
have their three revolutes intersecting in pairs. The graph of an octahedron is shown in Fig. 9 
which also, coincidentally, points up the duality between an octahedron and a hexahedron. 

For all the octahedral linkages, 

aii+ I = 0, al l  i. 

In order to relate the skew angles between adjacent joints directly to the appropriate angles of 
the triangular plates, shown in the models to be illustrated later, we adopt a special sign 
convention. We make the joint offsets alternately positive and negative so that, at every point 
of intersection, either both offsets are directed towards the point or both directed away from it, 
as illustrated in Fig. 10. Since each common normal is of zero length, we are free to choose a 
convenient direction for it. At every point of intersection of offsets, then, we choose its 
direction so that the usual right-hand screw convention makes the skew angle equal to the angle 
in the triangle which supports the relevant joint axes. This procedure is also evident in Fig. 10. 
In measuring joint angles on the models, it is consequently necessary to take some care to 
observe the appropriate convention, since the common normals will be manifested only as 
directions. 

EFA ~DDE~ CDE 

Figure 9. 
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t2 

Figure 10. 

The line-symmetric octahedral case 
Two views of a line-symmetric octahedral linkage model are shown in Figs. 11 and 12. Two 

views of another model, illustrating an alternative loop from the same octahedron are depicted 
in Figs. 13 and 14. Figure 15 shows a model due to Goldberg[2] which illustrates a special case of 
this linkage type, although Goldberg seems, erroneously, to regard it as a trihedral linkage. This 
latter model is meant to demonstrate that a judicious choice of plate shape will permit complete 
physical relative movement of the links. 

Bricard correctly recognises [9] this linkage as a special case of the general line-symmetric 
loop. Because of our particular sign convention, however, the constraints on the offsets must 
take the form 

Ri + R4 = R2 + R5 = R3 + R6 = 0, 

and the closure eqns (1.1-1.3) must be replaced, respectively, by 

Ol + 04 = 21r (1.1') 

02+ 05 = 2~r (1.2') 

03 + 06 = 2~r. (1.3') 

As a result, (1.4) must be replaced by 

ca34(sO2cO3scq2 + COesO3scqeCa23 + sO3ca12sot23) 

4- SaM(SOIC02¢03 4- C01502C03COL12 -- sOISO2S03CO123 4- C01C02803C0ll2C0123 

- c01sO3scq2Sa23) + c01sO2sa23 

+ SOICO2CaI2SO123 + sOisa12Ca23 = O, (1.4') 

and (1.5) simplified to yield 

Rl(SO2CO3SOtl2 + C02sO3sa12COt23 t sO3¢a12sa23 ) 

+ R2(SOlS~12 + s03s0123) -~ R3(¢01S02S0123 4- sOIcO2colI2SO123 4- SOlSOt12CO123 ) 

= 0 .  (1.5') 
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Figure 11. 

Figure 12. 

The above five closure equations have been verified by a series of readings on the two models 
of Figs. 11-14. The readings, and details of construction of the models, are available in [13]. 
They are not presented here because their only purpose is verification. As stated earlier, 
mobility of the octahedral linkages was established in [1]. 

4. The plane-symmetric octahedral case 
Although the linkage treated in this subsection is derived from the plane-symmetric 

octahedron, it is not itself plane-symmetric. Bricard [9] wrongly regarded it as a special case of 
the loop treated under 2. above, and it seems likely that he was confused over the difference 
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Figure 13. 
between link lengths and joint offsets. Considering the period in which he wrote, perhaps his 
error was not unusual; as mentioned in [6], the concept of joint offset was not common in the 
literature of the time. 

A model of this linkage is illustrated by the two views shown in Figs. 16 and 17. Some 
elementary geometry and trigonometry applied to the plane-symmetric octahedron yields, for 
the linkage, under the special sign convention adopted above, the dimensional constraints, say, 

R4 = - R 1  

S¢/34 D -- D S~61 
R2 = -- RJs(otl2 + 0t34) " 5  - ZXls(o~45 .~ or61 ) 

D Sal2 - R 1  . ~ , 
R3 =" 's(a~2~a~)  R6= stct4s (1'61) 

Figure 14. 
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Figure 15. 

and the corresponding closure equation, 

0~ + 04 = 2~r. (4.1) 

Substitution of the parametric constraints and (4.1) into (A6.12) with subscripts advanced by 5 
yields the result 

$0/61 _ COl C02C0/12] S (0/45 "4- 0/61) ($0/23S0/45[S01S02 

+ C02S0/12S0/23C0/45 q- C01S0/45[$0/M- $0/12C0/23] 

-- C0/45[C0/12Ca23 + Ca34]) 

S0/M 
q" S(0/12 + 0/34 ) (C[0/12 "t- O/34 ] + C0/23) -~" 0,  (4.2) 

after some manipulation. By analogy with the way in which this equation was obtained, we are 
able to write down a further three independent closure equations, namely 

s__a__~. + 
S(0/12 q'- 0/34) (S0/12S0/56[S01S05 C01C~5C0/45] 

- -  C05S0/45S0/56C0/12 + C01S0/12[$0/45C0/56 -- $O/61 ] 

+ c0/12[c0/61 + c0/45c0/~6]) 

50/61 . r + 0/61] "~ C0/56) = 0 (4.3) Jr s(0/~ T0/6j) tct0/45 

$0/12 
(0/7-~0/34)(s0/~s0/56[sO I sO6 - cO j c06c0/61] + cO~set~sa61 c0/~ S 

q- CO1 $0/34[$a45 --  $0/61C0/56] -- C0/34[C0156C0/61 + C0/45] ) 

$0/45 
+ s(0/45 + 0/61) (c[a45 + 0/6t] + c0/56) = 0 (4.4) 
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Figure 16. 

-- S0045 . 
0061) [ S0023S0061[ SOIS03 + C01C03C0034 ] -- C03S0023S0034C0061 

S(0045 + 

-t- COlS0061[S0034C0023 -- S0012] q- C0061[Cff12 -t- C0123C0045]) 

S~12 
"J" S(0012 @ 00M) (C[0012 "~ 0034] + C0023) ---- 0. (4.5) 

Equations (4.1)-(4.5) have been verified by means of a series of readings taken on the model of 
Figs. 16, 17. Again, detailed results are available in [13]. It is noted that no length term appears 
explicitly in any of the five equations. 

5. The doubly collapsible octahedral case 
Bennett preferred[11] to describe the parent octahedron of this type as "skew". Certainly, 

Flgure 17. 
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Figure 18. 

by comparison with the other two, its overall appearance offers nothing special. Three 
configurations (two of them collapsed) of a model of this type of loop are shown in Figs. 18-20. 
The particular property cited above concerning opposing vertical angles results in surprisingly 
simplified closure equations. 

Laid out in schematic form in Fig. 21 are the eight triangles which make up the octahedron. 
For any pair (/3i,/3~) of angles, we have the property 

/31 = cr/3i + J - - ~ - ,  ~r = -+1. 

Additionally, at any octahedron vertex, both (/3i,/3~) pairs take the same value of o,. Because the 
three angles of a triangle sum to ~r, the number of independent angles among the 24 shown is 4. 
This result sets the doubly collapsible octahedron apart from the other two, in each of which 

Figure 19. 
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Figure 20. 

the number of independent angles is 8. The unusual nature of the constraints, however, 
prevents us from easily writing down expressions for all angles in terms of four fundamental 
ones. 

To determine the closure equations, we choose for definiteness one of the four possible 
loops, namely ABFDEC. We accordingly designate the offsets as shown in Fig. 21 and find that 

Figure 21. 

MMT Vol. 15. No. 4-D 
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R9 = -- Sf31D 
S~3 jtx I 

R3 :" Sfl s S-ffS ° 
" s ~  s/33"" 

R4 = sfl8 s,.. ,R , a  
s~, s~,, 

whence 

R 6  = - s ~ 8 °  
s~:  "I 

R,-  s#; s_~.o 
-s /3h s/3~"" 

RIR3R5 + R2R4R6 = O. 

Although we do not use these parametric relationships to find the closure equations, it is worth 
noting that the offsets are interdependent. 

We now pass to Fig. 22, a schematic of the octahedron and the loop which we have chosen. 
We take advantage of the fact that there are four joint axes passing through each vertex, so that 
the four corresponding plates alone form a spherical linkage. (In fact, each of the Bricard 
octahedra may be seen as consisting of six superimposed spherical linkages.) We may therefore 
apply eqn (A4.9) to vertex A to obtain 

whence 

-- CO 1S~1S~7 -~- C[~lC[~ 7 = -- CO AES[~ ; S~ ~ "[- C[~ I C[~ ~, 

CO 1 = COAE. 

We may equally apply (A4.9) to vertex E, noting the conventional direction of RA~, to obtain 

whence 

-- C04S~5S~11 -~" C~5C~11 : - -  COAES(Tr -- ~ ) S  (~T -- ~ ; 1 )  -t- C("/T --  ~ ) C ( T / "  --  ~ ; I ) ,  

CO 4 = COAE. 

From these two results, 

c01 = c04 

so that, because of our sign convention, we may conclude 

0 1 + 0 4 = 2 7 7  . . (5.1) 

A 

R6 

C 

,F 

R3 

D 

Figure 22. 
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02+05=2,tr (5.2) 

03+06=2,tr. (5.3) 

Again, there is a variety of relationships available to be used as the remaining two necessary 
independent closure equations. We choose those obtained from (A6.9) by advancing the indices 
by 1 and 2, respectively. They are 

S06SOl(SOt56SO112 - -  S 0 t 2 3 $ o l 4 5 )  - -  C06C01($0156C0161 SOl 1 2  - -  $0123Ca345ol45) 

- -  COl(CO156SO161$oll 2 - -  Col238013480145) 

- -  C06(S0156S0t61C0ll 2 --  S0123$ol34Col45) 

+ (CCt56C0161C0112 - -  CO123COlMCO145 ) = 0 (5.4) 

S01S02(S0161S0123 --  S0134$0t56 ) --  C01C02(50161C01125Ol23- $o134Co145$tlt 56) 

- -  C02(C0161S0112Sa23 --  C0~MS0145S0[ 56 ) 

- -  C01(Sol61$0112C0123 --  SO13480t45COt56) 

+ (C0161C0112C~23 --  C0134C0145C0156 ) = O. (5.5) 

Equations (5.1-5.5), all of which are independent of the joint offsets, have been verified by 
readings[13] taken on the model of Figs. 18-20. 

Closing Remarks 
Whilst some of the geometrical aspects of the Bdcard linkages were touched upon in the 

foregoing, much was left unsaid, partly because the paper was already lengthy. There is 
certainly a good deal which can be investigated from the viewpoint of line geometry and screw 
system theory, in such matters as axodes, linear complexes and reciprocal screws. Of special 
interest would be an extension of such research to the original octahedra themselves, but, in 
this context, Bennett's [11] work should first be studied. It could also be of some value to apply 
the methods of graph theory, augmented by screw system analysis, to the octahedra, viewing 
them as multiloop linkages (Fig. 9). For the ambitious, an emulation of Bricard's success for 
other "concave" polyhedra might be in order, in which case Goldberg's recent paper[14] on the 
general subject of mobile polyhedra would be recommended reading. It is worth pausing, on 
this point, to consider the potential hazards in some of the architectural wonders which abound 
today; the very symmetries and other artistic properties which make them pleasing to the eye 
might also result in their unexpected structural instability! 

In any case, it would certainly be a pity if Bricard's great work were allowed to remain 
largely unknown for another fifty years, especially when it seems relevant to several areas of 
study. 
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Appendix 
Following Waldron[8], we may write down loop closure equations for 6-bar, 5-bar and 4-bar linkages, respectively, in 

the following form. It is always possible to obtain alternative equations by advancing subscripts, provided the parametric 
constraints are appropriately observed. 

C04C05C06 -- S04sO*Ic06COI4g -- C04S05S06CO/56- S0~C0~S06CO/45COl56 

+ 804S06SO/45S0156 

= C01C02C03- S01S02C03£Ol 12-  C01S02S03C0t23 -- $OIC02SO3COll2COt2~ 

+ sO~sO3sal2Sa2~ 

- -  C04C05S06C0161 + S04S05S06Ca45C0161 -- C04S05C06C0156Ca61 

- -  S04C05C06C0145CO/56COl61 + sO4COsSol4gSOlsrCOl61 + C04sOssc£5680161 

4" S04COsCO145SO156S~61 4- SO4SO/45COlsfSOlrl 

= sOIC02C03 + cOIS02C03CO/t2 -- sOIsOZS03CO;23 + COIC02S03CO112Col23 

-- cOisOSsa12So/2a 

C04C05806SOl61 -- S04S05806Ca45SO/61 + C04S05C06COl56SCl61 

+ S04C05C06C0145COl56SOl61 -- S04C06SO14,~SO156SOfrl + C04S0580156C0161 

+ S04C05COl45SOl56C0161 + S04S~45C0156C0161 

= S02C03SOL12 + C02SO3SOl12CO123 + S03C0ll2S0123 

S04C05C06 4" C04S05C06C0145 -- sO4sOsS06CO156 + C0nC05S06C0145C0156 

- -  C04sOrso/45So156 

= -- C01C02S03C017¢ 4 + SOIS02SO3COQ2CO134 -- C01S02C03C0123C0l M 

-- SO I C02C03COI I2CO~23CO~34 + SOl C03Sol 12SO~23,Col34 + COl sO2so123So134 

+ S01C02CO/12S0123S0134 + sOtsolI2COt23SOlM 

- -  S04C05S06COl61 -- ¢04SOsSO6CO145COt61 -- SOaSOsCO6CO156COt61 

+ C04C05C06C0145C01,16C0g61 -- C04C06S0145S0156C0161 + S04sO,iso1568o161 

-- C04C05COI4sSOlsrSOlrl -- C04S0145C01568Ol61 

= -- SOICO2SO3COt34 -- COIS02S03CO112CO/34 - -  S01S02C03¢Ol23C0134 

+ cO I C02C03COI 12CO/23 CO' 34 - cO I COaSo112SOL23£'Ol34 + SOl S02S0123 SOl 34 

-- cO I ¢02CO/12S~2t$0t 34 - (701 SOl 12 CO/23 SO/34 

504C05S06SOl61 + C04SO5sO6co145SO161 4-SO4sOscO6cOi56SOlrl 

- -  C04C05C06C0145CO/5680/61 4- C04C06SO145SO156SOlrl 4- $04sOsso/56CO161 

- -  C04C05CO/45SO/56COf61 -- C04SO145CO156COg61 

= -- S02SO3SO/12CO/34 4- C02C03SOl12COt23CO/34 4- C03COll2S0123CO/34 

- -  C02SOl12SO123SO134 4- C0ll2CO/23S0134 

S05C06SOl45 4- C05S06SOl45C~56 + S06COf45,$O~56 

= COIC02sO3so134 -- $OlsO2sO3COll2Sol34 + C01802C03C0123$~ M 

4- SO1C02C03COI 12COl23SO/34 - -  SOl C03SO/12S~ 23SOt 34 4- CO l$02SOt23C~34 

+ SOICO2CO/12SO123CO/34 4- S01SC£12C0123C0134 

(A6.1) 

(A6.2) 

(A6.3) 

(A6A) 

(A6.5) 

(A6.6) 

(A6.7) 
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- sOssO6sa45ca6t + c05c06sa4scas6ca6t + c06c~4ssas6ca6t 

-- C05SG45S(X56SO161 + C0L45C(X56$a61 

= $01C02$03$(]f34 + C01S02$03C(XI2S(~34 + sOISO2CO3C~23$(X34 

-- COIC02C03C(X12CG235G34 + COIC03SGI2$OI23SaM + SOl SO2$G23CCfM 

- cOtcOeca~2sax3cct34 - cOtsa~2cax3ca~ (A6.8) 

SO5SO6$O~4550L61 -- C05C06SC145C0156$0161 -- C06C0145S0156SG61 

-- C05SO14550156Cfl[61 + C~45¢G56C0i61 

= SO2S03$O112SOgM - -  C02C03SC112C0[235(X34 - -  C03CO112SG23S0134 

- c02sa~2sa23co04 + ¢at2ca23ca~ (A6.9) 

a12(c0203 - sO2sO3ca23) + r~(sO~cO~sa t2+ c02sO~sa~2ca2~ + sO~ca~2sct~) 

+ a~cO~ + r~sO~scr~ + a ~  + a4scOa 

+ asdc04cO~ - sO~sO~ca4s) + rssOda4~ 

+ a6~(c04c0~c06 - sO~sO~cO6ca4s - c04sOssO6ca56 - sO~cOssO6ca45ca56 + sO4sO6so~45$ot56) 

+ r6(cO4sOsso~56 + sO4cOsccx4~Sa~6 + sO4sot,,sccz56) 

= 0 (A6.10) 

d 12( - -  C02803C0134 -- SO2CO3CO123COlM + $0280~23SO[M) 

+ r l (  - -  SO2SO3S~X~2Ca34 + CO2CO3SO~ 12CG23COt34 + C03CG 128G23¢G34 - -  C02SGI2SCf23SG3~ + CO~I2CG23$G34) 

- a2303ca34 + r2(cO3sa23c(~3~ + ca23sa3~) + r3sa3~ 

+ d43S04 + Gs6(S04C05 + C04S05C~45) -- rscO~sota5 

+ a61(S04COsC06 + C04S05C06C0~45 -- S04SOsS06C~56 + C04C05S06C0145C0156 -- C04$06SG4sSO156 ) 

+ r6(sO,sO~sas6 - ¢O~cO~ca~ssa~6 - cOasa~ca~6) 

=0 (A6.11) 

at2( cO2sO3sct~ + SOxCO3COt23set~4 + sO2sa23Ca34 

+ rl(sO2sO35ff12s(x34 - C02c035G12¢cf23scf34- C03CG12SCf23SGM -- C025(X 12SG23C0~34 + CGI2Ca23CGM) 

+ d23sO3scX34 + r2(ca23ca34 -- CO~SCt23Sa~,) + r3ca34 

+ r4 + as6sOssa4s + r~cct4~ + a6t(sOscObsct~5 + cOssO6sa~ca~ + sO6CaasSa56) 

+ r6(ca45Cas6 -- cOsSC~,,ssa56) = 0 (A6.12) 

-- C02$C~ 1250/23 + CO~ 12C0/23 

= SO4SO~SCt3~Sa~ --cO4cO~sa3~ca45*sa~t - cO~sa34Sa~sCasi 

- cOsca~sa4~sa ~, + ca~4ca4sca~, (A5.9) 

as t(sO4cO~sa~ + C04sO~sa3~ca4s + sOscot~Sa4~) 

+ rs (ca~cot~ - C04Sa~Sa~s) + a,ssOasa~ + r4ca~  + r~ + r~cct23 

+ am2sO~sa2~ + r,(ca~2ca23 - cO~sa t2sa23) = 0 (AS. 12) 

-- C0250~ 12S0t23 + COt 12C0t23 = - -  COaSOt34$O145 + COt34CG45 (?,4.9) 

UNE ANALYSE DES MECANISMES DE BRICARD 

J. Eddie Baker 

R6$~r0~ - Maintenant les cin~r0aticiens connaissent et comprennent plusieurs m~canismes surcontraints 

mais, il y a cinquante ans, ils ~taiant consid~r~s comma "paradoxaux". Parmi lea cha~nes surcon- 

traintes lea plus significatives et lea plus int~ressantes sont celles publi~es au d~but du si~- 

cle par Bricard [1,93. Bian qua dtautres chercheurs [2,7,11-133 aient con~ent~ ces r~canismes 

et/ou aient ar~plifi~ lea aspects g~om~triques de ces octa~dres d~formables, aucune publication 

n'a analys~ le mouvement relatif entre lea membres. L'obJet de cat article eat d'utiliser la 

~thode des 6quations de clSture [3,6,8] pour d~crire pleinement 1as cinq m~canismes distincts. 

Cette analyse compl~ta le travail sur les m~canisnms surcontraints connus qui ne contiennent 

qua lea couples tournants [5,6]. 
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La premiere cha~ne de Bricard est la boucle g~n~rale ~ ligne de sym~trie (Fig. 2), con- 

ditionn~e par les ~quations (1.1-5). La deuxi~me est le m~canisme g~n~ral ~ plan de sym~trie 

(Fig. 4), qui eat sujet aux ~quations (2.1-5). Le troisi~me type distinct est le m~canisme 

tri~dre unique (Figs. 7,8), conditionn~ par les ~quations (3.1-5). On peut d~river tout droit 

le restant des trois octa~dres d~formables de Bricard [i~, mais l'un d'eux est un cas special 

de la cha~ne A ligne de sym~trie susmentionn~e. La quatri~me boucle (Figs. 16,17) est d~riv~e 

d'un octa~dre ~ plan de sym~trie, ~ais n'a pas elle-m~me un plan de sym~trie. Elle est condi- 

tionn~e par les ~quations (4.1-5). La cinqui~me cha~ne estle m~canisme "doublement aplatis- 

sable" (Figs. 18-20), sujet aux ~quations (5.1-5). 

Lea ~quations de cl6ture (A6.1-12) du m~canisme g~n~ral ~ six membres sont tr~s dif- 

ficiles ~ appliquer ~ cause du nombre et de la complexit~ des termes dans chaque ~quation. 

Dana cet article, on fair des simplifications dana la mesure du possible en appliquant les ~qua- 

tions ~ quatre membres et ~ cinq membres aux parties appropri~es des cha~nes ~ six membres. 

On fair quelques suggestions pour lea travaux futurs possibles dans le cas de ces 

m~canismes et des octa~dres connexes. 


