GRAPES 講習会 2007 資料

愛知県立春日井東高等学校 堀部 和経

発展的な使い方上級

上級編では、3つの話題を紹介します。1つ目は、「幾何ソフトとしての使用方法」、2つ目は、 「スクリプトの書き方」です。そして、3つ目には、「3次元表示」に関して少し触れます。

本文中には、[OK]や[定義終了]を押す、という表現は省略していることが多いです。

@ GRAPES	
領域/目盛 背景/ツール	
▣涎ਙёё∞ы₩₩₩₽	
◎ 目盛/軸表示	*

いるので押し過ぎたら、もっと押します。)

GRAPES を起動し、グラフエリアの [領 域 / 目盛] タグの [目盛 / 軸表示] ボタン を何回か押して、座標軸などをすべて表示 しないモードにします。(トグルになって

グラフウインドウで、右クリックして、プルダウンメニュ ーから[点を打つ][A]を押して、表示します。

同様に、点[B],点[C]をグラフウインドウに表示します。

右クリックのプルダウンメニューの [点を結ぶ] ボタンを押し込んだ状態にして、点 A から 点 B へマウスをドラッグすると、[連結図形] のプロパティウインドウが表示されるので、 頂点の欄に C を追加し、多角形ボタン 📢 を押し、三角形 ABC を表示します。

図形P のフロパティ

.

<u>о к</u>

<u> 削除</u>

種類

基本図形の[作成]で[P]を選び、[図形 Pのプロパティ]で[円]を選びます。

P の式表示窓 (「*P* =」の右側)をクリックし 関数電卓を表示します。

[内心]を押し、Icentr(A,B,C)と入力します。 r の式表示窓をクリックし関数電卓を表示し ます。

[内径]を押し、Irad(A,B,C)と入力します。

創業	
P = が心(A, B, C)	
Icentr(A,B,C)	
関数1 関数2 関数3 関数4	♦ → BS Del ♦
A B C .x .y .r []	a h d V
DEF arg•det	$a \rightarrow x^{-} x^{-}$
GHI roll 回転	c d x^{3} x^{-1}
J K L 分点 交点	m n x ² 7
MNO 垂足 接点	p q
POR 外心 外径	s t r 4
S T U 内心、内径	и у У 1
小垂 √ (山重 X V	

<u>キャンセル</u>

<i>@</i> HI	大 電卓	i							
r = √02	Ĩ	内徑	(A, B, C)					
Irad	(A,E	3,C)							
開数1	関	数2	関数3 関数	4		•	BS 1	Del	+
A D	B E	C F	.x.y.r aro	[] • det	а	Ь	х ⁴	x ^y	
G	H	Ι	roll	回転	С	đ	х З	x-1	
J	K	L	分点	交点	m	n	x 2	7	
M	Ν	0	垂足	接点	\mathcal{P}	q	r	4	
Р	Q	R	外心	外径	S	ť	12	1	
S	Т	U	国心	内径	и	v	y	1	
V		X	重心	垂心区	k	A	x	0	

どうですか、三角形 ABC と内接円 P が表示されましたか。この一連の作業⑤~⑨で内接円を表示させることができます。

さあ、もうすこし作業を進めていきましょう。

基本図形の作成で D を選び、[図形 D のプロパテ ィ]で[点]を選びます。次に、D の式表示窓を クリックし関数電卓を表示し、[垂足] を押し、 perp(P,B,C)と入力します。

[点を結ぶ]状態にして、2点 AD を線分で結び ます。同じく、2点 PD も結びます。

ここからは説明を省略した形で進めます。 (⑫, ⑬は、⑤~⑨の作業の繰り返しです。)

ABD の内接円 Q をかきます。

ACD の内接円 R をかきます。

2つの三角形 ABD と ACD にそれぞれ内接円がかけましたか。そろそろ、完成です。
2 点 QR を線分で結びます。
[点を結ぶ]状態を解除します。([点を結ぶ]をもう一度押します。)
基本図形の[作成]で点Sを作成し、S=intr(A,D,Q,R)とします。
2直線ADとQRの交点をSとするといういみです。

プロジェクトは、適当な名前 (ファイル名)で保存しておきましょう。

関数電卓の [関数 3] タブの中には、幾何的な
関数が数多く用意されています。例えば、
回転、分点、交点、垂足、接点、
外心、外径、内心、内径、重心、垂心
です。 また、 マウスカーソルをそれぞれの <u>ボタン</u>
の上に持っていくと、 <u>ガイド</u> が下段に表示される
ので、その関数の引数の意味がすぐに判る点がい
いところです。(^_^)v

関数	[1	関調	数2	関数3 関数	:4			BS I	Del	←.	定義約	<u>冬了</u>
А		в	С	.x .y .r	[]		ħ	4	v	3/		,
D		Е	\mathbf{F}	arg	• det	a	υ	X 7		Ň	L L	/
G		\mathbf{H}	Ι	rol	回载	c	đ	χ3	x -1	\sim	()	×
J		K	L	分点	交点、	m	n	χ2	7	8	9	_
M	[N	0	垂足	操作	p	q			=	6	
Ρ		Q	R	外心	外径	S	ť	· ·		5	0	Τ.
S		т	U	内心	内径	u	v	У	1	2	3	π
V			х	重心	垂心。	k	θ	x	0		,	e

. スクリプト・超入門

スクリプトとは、GRAPES 内で動く 小さなプログラムです。スクリプトを使 うと,パラメータの増減やグラフ描画を コントロールすることができます。

Vで、作ったプロジェクトを使用します。

[題材] 頂点 A が揺れるように動く、 スクリプトを書いてみましょ う。

(O) 準備

三角関数を度数法で使用するので、コントロールパレットの[領域/目盛]タグのオプションボタン ションウィンドウを表示します。[関数]タブをクリック リックし、[角の単位]で[度数法]を選びます。

🖉 メモ			
メモニスクリプ	•		
	,		
<			
ΟK	演田	キャンセル	
	<u>199771</u>	<u>1 Y Z CIV</u>	

(1) スクリプトを書く

メモエリアの[編集]ボタンをクリックし、次に,[スクリプト]タグをクリックします。 背景が薄いブルーの編集窓にスクリプトを記述します。右が実際の入力画面です。

//ゆł	13	گ 🕷		
for u	≔ 60 to 420 step 5	<u>メモ</u> スクリプト //ゆれる		
	60 から 420 まで 5 刻み幅で <i>u</i> を動かす。	for u:=60 to A.x:=4cosu	420 step	5
A.x	=4cosu 点 A の <i>x</i> 座標に、 4 cos <i>u</i> を代入する。	A.y:=2+sinu draw		
A.y	=2+sinu 点 A の y 座標に、2 + sin <i>u</i> を代入する。	next 		
dra	w 計算し描画する。	<		× >
next	次のuへ	ок	適用	<u>キャンセル</u>

メモウィンドウの[OK]をクリックすると,メモ エリア下部に[ゆらす]ボタンができます。

📝 編集	∃ XE
💪 ゆらす	<u></u>
	ス別プトの実行

クリックしてみましょう。

点 A が、楕円を描きながら左右にゆれるように動くことが確認できます。

「ゆれ方」が気に入らないときは、 A.*x* ≔ *a* + *b* cos*u* , A.*y* ≔ *c* + *d* cos*u* の自由変数(定数)を変えたり。 *x*, *y* の関係式を自由に変えて、「ゆれ方」を工夫して下さい。 (^_^;)

コマンドと式

スクリプトは,コマンドと式でできています。コマンドに大小文字の区別はありませんが,式は大小文字を区別して書く必要があります。例えば,"Draw"は"DRAW"でも "draw"でも構いませんが,円周率"Pi"を"PI"や"pi"と書いてはいけません。

(2) 複数のスクリプトを書く

先ほど作った [ゆらす] ボタンのすぐ下に、新しくスクリプトボタン [ゆらす2] を作りたい と思ったときの方法を説明します。

メモエリアの[編集 」ボタンをクリックし、次に, [スクリプト]タグをクリックします。 スクリプト編集窓に<u>1行の空白行</u>を入れてから、 下のように記述したいのです・・・。

ワープロ等と同じく、反転させて右クリックでコ ピーを選択し、貼り付けをして、編集しましょう。

//ゆれる2 InvShowObj(A,B,C,D,P,L4) オブジェクトの表示・非表示を切り替える for u:= 60 to 420 step 5 A.x:=4cosu A.y:=2+2sin2u draw next

面倒なコマンドの入力(綴りを忘れても大丈夫) スクリプト編集画面上で<u>右クリック</u>すると,コマン ドの一覧がメニューの形で表示され,クリックすると 編集画面に挿入されます。 と言うことで、コマンドは絶対に忘れちゃダメ・・・な んてことは無いのです。(^^;)

・・・しかし、ちょっと待って、・・・

「ゆれる2」スクリプトを記述し完成しましょう。

[ゆれる2] ボタンを押すと、三角 形が消え、2つの円だけが、ゆれるこ とを確認してください。

再度 [ゆれる2] ボタンを押すと、 三角形の表示が元に戻りますね。

さて、

[ゆれる] ボタン [ゆれる2] ボタン を適当に何回か押してください。三角 形と内接円が一緒にゆれたり、円だけ がゆれたりしますよね。

で、確認してください。……「赤い円は常に接しています」……よね。

スクリプトの追加説明

・最初の1行が,スクリプトボタンのボタン名として表示さます。
・最初の行に注釈文(//)があるときは,注釈文の内容がボタン名になります。
・スクリプトの1行目に HideScript 命令があるとき,このスクリプトは表示されません。
・1行には1命令しか書くことができません。
・語と語の間には,半角空白を入れないとダメです。

スクリプトの個数
スクリプトは最大20個作ることができます。けっこう余裕があります。(^ ^)v

GRAPES で判らないことがあったら、データパネルの [ヘルプ] をクリックし、[PDF マニュアル] を参考にしてください。ちなみにスクリプトは、第14章になっています。

	■ ### @##50### ■ ### @##50## ■ ### MM00727
ファイル(E) 編集(E) 表示(V) ヘルプ(H)	x5 mpg 表示機能に目的の限数 本5 mpg (MMRk00757) 本5 mpg (MMRk0757) 14-1 スクリプトとは
● ● ● ● ● ● ● ● ● ●	 ■1 ■ 100 million ■2 ■ 100 million ■3 ■ 100 million ■3 ■ 100 million ■3 ■ 100 million ■4 ■ 100 million ■4 ■ 100 million ■4 ■ 100 million ■4 ■ 100 million ■5 ■ 100 million ■5 ■ 100 million ■6 ■ 100 million ■7 ■ 100 million

.3次元表示、そして残像とスクリプトの合わせ技?

GRAPES には、「3D-GRAPES 試作版 (あくまで、試作版と友田先生が書かれています)」がありますが、 普通の GRAPES の関数で、

proj(x, y, z, s, t, d)

を用いると、3Dを2Dへ射影してくれます。変数は、

x, *y*, *z*:説明は不要

ですね。そして、

s,*t*,*d* : 水平角、立体角、視点の距離

です。

これを利用し、サッカーボールのような図を表示する

サンプルを紹介します。その際、残像の機能とスクリプトを上手く使うことによって、表現して います。

GRAPES で表現できる点の数は、2 2 個 (固定されている原点 O を含む)です。し たがって、切頭 2 0 面体(?)

TRUNCATED ICOSAHEDORON(サッ カーボール形)は、頂点が90個もあるの で無理。

そこで、図のように、18個の点を上手 く配置して、スクリプトによって、回転移 動した線分(や点)を表示することで、全 体を表示しています。

(上図は、残像を薄く表示して、元の像と残像とを区別させています。)

ファィル 2007icosa.gps を GRAPES で開いて、実際に確認してください。 すべてのテクニックの詳細を説明する 紙面はもうありません。

 $m(_\,)m$

ファイルをの構造を見ていただくと、どのように作ったかが判ると思います。調べて見て下さい。 (^_-)

参考 URL http://horibe.jp

